Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 112: 110072, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33075666

RESUMO

Identification of runner's performance level is critical to coaching, performance enhancement and injury prevention. Machine learning techniques have been developed to measure biomechanical parameters with body-worn inertial measurement unit (IMU) sensors. However, a robust method to classify runners is still unavailable. In this paper, we developed two models to classify running performance and predict biomechanical parameters of 30 subjects. We named the models RunNet-CNN and RunNet-MLP based on their architectures: convolutional neural network (CNN) and multilayer perceptron (MLP), respectively. In addition, we examined two validation approaches, subject-wise (leave-one-subject-out) and record-wise. RunNet-MLP classified runner's performance levels with an overall accuracy of 97.1%. Our results also showed that RunNet-CNN outperformed RunNet-MLP and gradient boosting decision tree in predicting biomechanical parameters. RunNet-CNN showed good agreement (R2 > 0.9) with the ground-truth reference on biomechanical parameters. The prediction accuracy for the record-wise method was better than the subject-wise method regardless of biomechanical parameters or models. Our findings showed the viability of using IMUs to produce reliable prediction of runners' performance levels and biomechanical parameters.


Assuntos
Corrida , Fenômenos Biomecânicos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
2.
Nat Commun ; 11(1): 4356, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868777

RESUMO

Complex motor commands for human locomotion are generated through the combination of motor modules representable as muscle synergies. Recent data have argued that muscle synergies are inborn or determined early in life, but development of the neuro-musculoskeletal system and acquisition of new skills may demand fine-tuning or reshaping of the early synergies. We seek to understand how locomotor synergies change during development and training by studying the synergies for running in preschoolers and diverse adults from sedentary subjects to elite marathoners, totaling 63 subjects assessed over 100 sessions. During development, synergies are fractionated into units with fewer muscles. As adults train to run, specific synergies coalesce to become merged synergies. Presences of specific synergy-merging patterns correlate with enhanced or reduced running efficiency. Fractionation and merging of muscle synergies may be a mechanism for modifying early motor modules (Nature) to accommodate the changing limb biomechanics and influences from sensorimotor training (Nurture).


Assuntos
Músculo Esquelético/fisiologia , Corrida/fisiologia , Adulto , Fenômenos Biomecânicos , Criança , Pré-Escolar , Eletromiografia , Feminino , Humanos , Locomoção , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...